Question Number	Answer	Mark
1	Explain the difference between elastic deformation and plastic deformation	
	QWC - spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	Elastic - returns to original shape when deforming force/stress removed /no permanent deformation	(1)
	Plastic - doesn't return to original shape when deforming force/stress removed / permanent deformation	(1)
	Suitable material or object named which undergoes elastic and plastic deformation, e.g. spring/wire/strawberry laces - do not accept rubber / elastic band but accept balloon	(1)
	Illustration comparing both types of deformation under different force / stress / strain / amount of deformation for material / object (independent of material mark)	(1)
	Total for question	4

Question	Answer	Mark
Number		
2 (a)	Explain the meaning of the terms:	
	Ductile - can be made/drawn into wires / shows significant/large/lots of plastic deformation / large plastic region	(1)
	Brittle - shatters when subject to impact / sudden force fails/breaks/cracks with little or no plastic deformation / breaks just beyond elastic limit / breaks just beyond limit of proportionality / breaks under stress due to propagation of	
	cracks	(1)
2(b)	Calculate the mass that would produce this load.	
	Use of $W = mg$	(1)
	Correct answer (3600 kg)	(1)
	Example of calculation	
	W = mg	
	$m = 35\ 000\ \text{N} / 9.81\ \text{N}\ \text{kg}^{-1}$	
	= 3570 Kg	
	Total for question	4
PhysicsAn	dMathsTutor.com	

Question	Answer	Mark
Number		
3(a)	Explain the meanings of the terms brittle and ductile.	
	tends to break when subject to impact [accept breaks just beyond / soon after limit of proportionality / elastic limit] (1)	
	graph (1)	4
	to undergo permanent deformation under tensile stress / can be drawn into wires (1)	4
	graph (1)	
	[Assume axes labels if not given, accept force, extension labels]	
	curved from start]	
	Brittle	
	Stress Stress Ductile or	
3 (b)	give an example of a ductile material and situation where behaviour	
	desirable	
	material example, e.g. conner (accent metal or any metal) (accont	2
	chewing gum, silly putty) (not rubber)(1)	Z
	example of desirable application, e.g. making wires (1)	
	[NB Not examples of moulding or malleable behaviour]	
	Total for question	6

Question Number	Answer		Mark
4(a)(i)	Stress needed to fracture/break (do not accept a definition of strong)	(1)	1
4(a)(ii)	Resistance to indentation/scratching Or resistance to plastic deformation of the surface	(1)	1
4(b)	4		
	(Brass is) strong Or high breaking stress (accept high breaking force) Or breaking stress is much greater than 10 MPa.	(1)	
	so the <u>key</u> will not break (Conditional on MP1)	(1)	
	(10MPa/stress) is below the elastic limit Or the elastic limit is at about $300(\pm 50)$ MPa Or the plastic deformation starts at about $300(\pm 50)$ MPa The key would keep its shape (when the force is removed)	(1)	
	Or the <u>key</u> would not plastically deform Or any deformation of the <u>key</u> would be elastic (Conditional on MP3)	(1)	
	Stiff Or high Young's modulus	(1)	
	The <u>key</u> would not change shape (as it is being used) (Conditional on MP5)	(1)	4
	(ignore references to tough and limit of proportionality and accept yield point for elastic limit)		6

Question Number	Answer	Mark
5(a)	N	
	See stress = $\frac{N}{m^2}$ Or stress = N m ⁻² (1)	
	See strain $-\frac{m}{m}$	
	$\int \frac{1}{m} dt = \frac{1}{m} $	2
	50	
5(b)(i)	see $\sigma = \frac{50}{7.0(\times 10^{-2}) \times 7.0(\times 10^{-2})}$	
	Or see $E = \frac{Fx}{A\Delta x}$	
	(1)	
	see $\varepsilon = \frac{2.0(\times 10^{-2})}{10^{-2}}$	
	$\int \frac{F}{7.0(\times 10^{-2})} \int \frac{F}{10^{-2}} \operatorname{m}(x) = \frac{F}{10^{-2}} \operatorname{m}(x) = \frac{F}{10^{-2}} \operatorname{m}(x)$	
	$\int dx = 2 (10^{-10} \text{ m}) $	
	= (2 - 2 - 2) + (2 - 2)	3
	$E = (3.5 \text{ or } 3.6) \times 10^{4} \text{ Pa}$ (1)	5
	Example of calculation	
	$\sigma = \frac{50 \text{ N}}{(0.070 \text{ m})^2} = 10\ 204 \text{ Pa}$	
	0.020 m 0.20 c	
	$\varepsilon = \frac{1}{0.070 \text{ m}} = 0.286$	
	$E = \frac{10\ 204\ Pa}{2000\ Pa} = 35\ 678\ Pa$	
	0.286	
5(b)(ii)	The (cross sectional) area would get bigger (1)	
	(do not allow surface area)	
	Effect: This would give a smaller value for the Young modulus	2
	(1)	2
	(If the candidate just states 'YM will get smaller' without any	
	Justification, do not award any marks)	
	(MP2 only for (cross sectional) area gets smaller leading to increase	
	Total for Question	7

Question Number	Answer	Mark
6(a)(i)	Can withstand large stress/ force / tension Or requires a large stress/force to fracture (1)	1
*6(a)(ii)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)	
	Max 4 (any two properties and corresponding explanations)Higher elastic limitso will return to its original length/shape if greater forces are applied	
	(if a fly flies into it for the same thickness of silk) (1)	
	Higher ultimate /breaking <u>stress</u> (1) so stronger Or higher strength Or so the thread could be thinner (so less visible to the fly) Or for same (cross-sectional)area can withstand	
	larger force (1)	
	Larger area under the graph (1)	
	stretches the web) (1)	
	Larger gradient Or steeper Or greater Young modulus Or smallerstrain/extension for the same stress/force(1)so stiffer(1)	4
6(b)(i)	Use of the gradient Or correct use of pair of values from linear section of the graph (up to 0.05 for strain) (1)	
	Young modulus = 1.5×10^9 Pa (1)	2
	(Accept from 1.45×10^9 Pa to 1.65×10^9 Pa) (1)	2
	Example of calculation Gradient =	
	Young Modulus = 1.49×10^9 Pa	
6(b)(ii)	Use of $E = \sigma/\epsilon$ Or uses $\sigma = 44$ (MPa) read from graph (1)	
	Use of $\boldsymbol{\varepsilon} = 0.03$ (or lengths equal to this) (1)	
	Use of $\sigma = \frac{F}{A}$ (1)	
	$r = 2.0 \times 10^{-6}$ m (ecf from part (b)(i) for YM) (1)	4
	(Accept answers in the range 1.9×10^{-6} m to 2.1×10^{-6} m)	
	Example of calculation Stress = 1.49×10^9 Pa $\times 0.03 = 4.47 \times 10^7$ Pa	
	$A = \frac{130 \times 10^{-11}}{100 \text{ Pa}} = 1.30 \times 10^{-11} \text{ m}^2$	
	$r = 1.03 \times 10^{-6} \mathrm{m}$	
	Total for question	11

Question	Answer			Mark
Number				
7(a)(i)	Brittle = A			
	Ductile = B and /or C			
	Strongest = A			
	Least stiff $= C$		(4)	4
7(a)(ii)	A = Glass			
	B =Steel			
	C = Copper		(2)	2
	3 correct = 2 marks, 1 or 2 corr	rect = 1 mark		
7(b)	One property stated		(1)	
	One behaviour stated		(1)	
	The property and behaviour fro	om the same row in the table and clearly		
	linked in the candidate's respon	ise	(1)	3
	Property Behaviour			
	High UTS Or strong Or not	Will not break when opened/		
	brittle	Will not break when force/stress applied		
	High Young Modulus or stiff	Grips paper (firmly)		
	Ductile	Can be drawn into wires		
	Malleable	Can be bent into shape		
	Elastic	Will close after being opened		
7(c)	X = yield point		(1)	
	Point at which material shows a	a large (increase in) strain for a small/no		
	increase in stress		(1)	2
	(Accept the point at which plas	tic deformation/behaviour/property begins)	Ň	
	Total for Question			11

Question Number	Answer	Mark
8	• Reference to strain = $\frac{change inlength}{original length}$ (1) [just quoting $\Delta x/x$ without defining terms does not get the mark]	
	• Compressive is a decrease in length/squash/squeeze/causes a negative extension and tensile is an increase in length/stretch/pull/causes a (positive) (1) extension	2
	Total for question	2

Question	Answer		Mark
Number			
*9	(QWC – Work must be clear and organised in a logical manner using technical		
	wording where appropriate)		
	Max 5		
	Malleable for shields	(1)	
	Undergoes (large) plastic deformation	(1)	
	Under compression Or compressive force Or compressive stress	(1)	
	Ductile for wires	(1)	
	Undergoes large (plastic) deformation	(1)	
	Under tension Or tensile stress Or tensile force	(1)	5
	Total for question		5

Question Number	Answer		Mark
10*	(QWC - Work must be clear and organised in a logical manner usin technical wording where appropriate)	Ig	
	Small extension hard to measure accurately (or converse) Small extension gives large percentage uncertainty (or converse)	(1) (1)	
	Max 4 from		
	(thin wire has) small area	(1)	
	stress = force/area	(1)	
	so get a larger stress (for a given force) / don't need such a large	force /	
	need too much force needed if not thin	(1)	
	greater extension - linked to thinner wire	(1)	
	strain = extension/original length / extension $$ original length	(1)	
	greater extension - linked to longer length	(1)	
	(Alternative to equation marks: Young modulus = stress / strain or $E = Fx / A\Delta x$ (accept alternative symbols) scores 1 mark, rearranged to make extension the subjec marks)	e t scores 2	
	Accept converse arguments (Ignore references to breaking or surface, as in surface area) Total for question		Max 5
			-

Answer	Mark
(The graph shows) brittle - undergoes no/little plastic	
deformation/behaviour (before breaking) /	
breaks/fails just beyond/soon after limit of proportionality/elastic limit	
(T) (The graph shows) ductile - undergoes lots of/significant/large plastic deformation (before breaking) /	2
able to undergo permanent deformation under tensile stress (1)	-
Porcelain/vase/it is <u>brittle</u> (1)	
When broken it doesn't (permanently) deform/change shape/bend (or	2
synonyms - but 'dent' is not sufficient) (No elastic deformation not	
sufficient) (1)	
Total for question	4
	Answer (The graph shows) brittle - undergoes no/little plastic deformation/behaviour (before breaking) / breaks/fails just beyond/soon after limit of proportionality/elastic limit (1) (The graph shows) ductile - undergoes lots of/significant/large plastic deformation (before breaking) / able to undergo permanent deformation under tensile stress (1) Porcelain/vase/it is <u>brittle</u> (1) When broken it doesn't (permanently) deform/change shape/bend (or synonyms - but 'dent' is not sufficient) (No elastic deformation not sufficient) (1) Total for question